POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

COURSE DESCRIPTION CARD - SYLLABUS

Course name

Analiza instrumentalna w analizie środowiskowej (Instrumental analysis in environmental analysis)

Course

Field of study Year/Semester

Technologia chemiczna (Chemical Technology) 3/5

Area of study (specialization) Profile of study

Level of study general academic

Course offered in

First-cycle studies Polish

Form of study Requirements

part-time elective

Number of hours

Lecture Laboratory classes Other (e.g. online)

15

Tutorials Projects/seminars

Number of credit points

2

Lecturers

Responsible for the course/lecturer:

Responsible for the course/lecturer:

dr hab. inż. Magdalena Krawczyk-Coda

e-mail: magdalena.krawczyk-

coda@put.poznan.pl

tel. 616652283

Wydział Technologii Chemicznej

ul. Berdychowo 4, 60-965 Poznań

Prerequisites

The student has general knowledge in the field of analytical chemistry and instrumental analysis gained during the classes in analytical and instrumental chemistry. The student uses basic chemical equipment and laboratory glassware.

Course objective

The aim of this course is to familiarize students with the practical use of basic instrumental techniques and analytical methods used in environmental analysis.

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

Course-related learning outcomes

Knowledge

- 1. K_W08 The student distinguishes and is able to assess the possibility of using a given analytical method and / or instrumental technique.
- 2. K_W06 The graduate knows the operation principles of the measurement systems. The graduate understands the operation principle of the apparatus used in instrumental techniques.

Skills

- 1. K_U21 The graduate can plan and conduct simple experiments, interpret their results and draw conclusions. Selects and applies analytical methods and techniques in qualitative and quantitative analysis. Has the ability to perform quantitative analysis.
- 2. K U05 The graduate has the ability to self-study.
- 3. K U10 The graduate applies WHS (Work Health and Safety) principles in the analytical laboratory.

Social competences

- 1. K_K01 The graduate understands the need to develop and improve his/her professional competency.
- 2. K_K05 The graduate is aware of the importance of professional conduct and respect for professional ethics.
- 3. K_K03 The graduate is aware of the responsibility for his/her own work and the willingness to comply and responsibility for tasks carried out as a team.

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

Verbal and written control of the student's knowledge prior to the commencement of laboratory classes in instrumental analysis. Written reports on the exercises performed.

Programme content

The laboratory classes include six exercises in the field of environmental analysis:

- 1. Iodometric determination of the active chlorine in water
- 2. Determination of oxygen dissolved in water by the Winkler method
- 3. Voltammetric determination of lead
- 4. Spectrophotometric determination of iron(II) ions in the form of a complex with ophenanthroline
- 5. Determination of sodium and potassium in river water
- 6. Determination of bromides in tap water

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

Before the series of laboratory classes, students are familiarized with the general principles of safety work in the chemical laboratory, during the classes health and safety instructions regarding a given workplace are given.

Teaching methods

Performing experiments in accordance with the schedule of the subject and a written report including the appropriate chemical reactions along with mathematical calculations.

Bibliography

Basic

- 1. A. Cygański, Metody spektroskopowe w chemii analitycznej, WNT, Warszawa 1995
- 2. D.A. Skoog, D.M. West, F.J.Holler, S.R. Crouch, Podstawy chemii analitycznej. Tom 1 i 2, PWN, Warszawa 2006
- 3. A. Cygański, Podstawy metod elektroanalitycznych, WNT, 1999
- 4. J. Minczewski, Z. Marczenko, Chemia Analityczna. Tom 1, 2 i 3, PWN, Warszawa 1985
- 5. A. Cygański, Chemiczne metody analizy ilościowej, WNT, Warszawa 2005

Additional

- 1. J. Dojlido, J. Zerbe, Instrumentalne metody badania wody i ścieków, Arkady, Warszawa 1997
- 2. W. Szczepaniak, Metody instrumentalne w analizie chemicznej, PWN, Warszawa 2002
- 3. H. Elbanowska, J. Zerbe, J. Siepak, Fizyczno chemiczne badania wód, Wydawnictwo Naukowe UAM, Poznań 1999

Breakdown of average student's workload

	Hours	ECTS
Total workload	50	2,0
Classes requiring direct contact with the teacher	16	0,5
Student's own work (literature studies, preparation for laboratory	34	1,5
classes/tutorials, preparation for tests/exam, project preparation) ¹		

_

¹ delete or add other activities as appropriate